

2. On the diagrams above that DO NOT show SAS, color the side of each triangle that would make it an example of SAS.

Guided Practice Proof

Given: C is the midpoint of BF; $AC \cong CE$ **Prove:** $\triangle ABC \cong \triangle EFC$

С

С

Statements	Reasons
1. C is the midpoint of BF;	1.
AC≅CE	
2. $\angle ACB \cong \angle ECF$	2.
3. BC ≅ CF	3.
4. $\triangle ABC \cong \triangle EFC$	4.

Given: BD bisects ∠CDA ; CD ≅DA Proof #1 **Prove:** $\triangle BCD \cong \triangle BAD$

angle-side-angle relationship?

Proof #2 Given: OM bisects \angle LMN; \angle LOM $\cong \angle$ NOM Provo: $I M \cong NIM$		[м	
64-4	$\mathbf{FIOVE.} \mathbf{LIVI} = \mathbf{IN}.$	NI Bessere		
Stati				N
Proof #3	Given: ∠BAC ≅	∠DEC; BD bisects AE	D	
	Prove : $\angle ABC \cong$	∠EDC	1	
State	ements	Reasons	A C	
			B	
Proof #4	Proof #4 Given: HJ is a Perpendicular Bisector of KI			
	Prove : ∆HJK ≅⊿	A HJI		
State	ements	Reasons	K	
Activity: To	the right is the proc	f that two	tement Reason	
triangles are	congruent by Side A	Angle Side	_	

Activity: To the right is the proof that two
triangles are congruent by Side Angle Side.
Draw two triangles, whose diagram is
consistent with the proof.

Statement	Reason
1) c is midpoint of \overline{BX}	1) Given
c is midpoint of AY	2) Given
3) $\overline{BC} = \overline{XC}$ 4) $\overline{CA} = \overline{CY}$	 definition of midpoint definition of midpoint
5) ∠BCA ≅ ∠XCY	5) Vertical angles are congruent
6) ∆BCA ≅ ∆XCY	6) SAS